La supremacía cuántica.

En el programa de EUREKA indagamos en la noticia de que Google ha alcanzado la la supremacía cuántica que es equivalente a decir que Google ha conseguido manejar a múltiples gatos de  Schrödinger.

En la última parte del programa realizamos algunas recomendaciones de libros de divulgación científica de nuestro blog:  Los Beatles y la ciencia de Ernesto Blanco (2015, Siglo XXI Editores), El club de la hipotenusa de Claudi Alsina (2010, Ariel) y Explicar el mundo de Steven Weinberg (2015, Taurus).

Ir a descargar

Si lo dicho le suena extraño lea lo que sigue.

Erwin Schrödinger inventó,  o quizás seria mejor decir que descubrió, la ecuación de Schrödinger (¡Que otra ecuación podía inventar!), pilar fundamental de la Física Cuántica. Aunque nadie duda de su validez,  ninguna  teoría científica se ha comprobado válida con más decimales de precisión,  presenta aparentes paradojas. Quizás la mas desconcertantes es que permite que varios estados puedan darse simultáneamente,  lo que contradice la lógica aristotélica (por ejemplo, Sócrates es mortal o Sócrates no es mortal, pero no ambas cosas, en M. C puede darse esta última opción).  El propio Schrödinger estaba confundido con esta extraña propiedad e inventó un experimento mental conocido como: el gato de Schrödinger ( en su caso es un gato imaginario) en el que un gato podía estar vivo y muerto a la vez, hasta que “colapsaba la función de onda” en la que el gato pasaba a estar vivo o muerto.

Resultado de imagen de schrödinger gato

En vez de un gato supongamos un circuito eléctrico que puede estar apagado  (llamémosle estado  “cero”) o encendido (estado”uno”), si el sistema es cuántico podrá estar en una superposición de ambos estados a la vez.  El genial Richard Feynman en 1981 (y otros) se dieron cuenta que este hecho podría utilizarse para construir computadores muchísimo mas veloces que los actuales (no me refiero a diez o cien o mil veces, quiero decir trillones o cuatrillones y mas veces mas rápidos). Durante años se consideró como una propuesta puramente teórica. Algunos se la tomaron muy en serio, como el español Juan Ignacio Cirac, y sugirieron formas de construir un computador de este tipo, pero lo veían como una propuesta muy lejana (decenas de años).  Varias de las grandes compañías tecnológicas, y seguramente algunos gobiernos,  decidieron ir a por el objetivo: Construir un computador cuántico. El reto era inmenso, se trataba de conseguir controlar múltiples estados de superposición, algo así como tener encerrado miles gatos de  Schrödinger en estado vivos o muertos, solo cuando de abriese la jaula se sabría el numero de vivos y el de muertos.

Las cosas han ido mucho mas rápido de lo que hace poco tiempo se pensaba. Por lo pronto Google parece que ha tomado la delantera, aunque solo sea domesticando a 53 gatos de Schrödinger.  El 23 de octubre de 2019 lo publicaron en Nature, una de las revistas científicas más prestigiosas, un artículo donde afirman haber alcanzado la supremacía cuántica. Según ellos su ordenador, que solo tiene 53 qbits,  habría realizado en 200 segundos un cálculo que al ordenador mas potente existente le llevaría diez mil años.

Google demuestra la supremacía cuántica

Para que nos demos cuenta de que solo con 53 qbit se pueda conseguir semejante rapidez le recuerdo lo que es un qbit:

En los ordenadores clásicos, la información se codifica en bits binarios, por lo que dos bits pueden tomar los valores 00, 01, 10 o 11. Pero un ordenador cuántico puede estar en una superposición de todos los estados clásicos: dos cúbits tienen una cierta probabilidad de ser 00, 01, 10 y 11, es decir 4 posibilidades hasta que los midamos; tres cúbits tienen una cierta probabilidad de estar en 2 elevado a 3 es decir ocho estados, y así sucesivamente.  El procesador cuántico Sycamore utilizado por Google incorpora 53 cúbits superconductores, lo que significa que un estado interno concreto de esta máquina tiene un tamaño de 2 elevado a 53, es decir 2 multiplicado 53 veces que es aproximadamente 10 000 billones.

El tema es muy controvertido, para empezar lo que se ha resuelto es un problema concreto. El computador de Google está lejos de ser un computador universal, como los que tenemos en nuestras casas y en nuestros móviles, en el que pueda realizarse cualquier tipo de operación. Además IBM dice que un computador clásico optimizado para este problema podría resolver ese problema concreto en  en unas horas, pero no hay que olvidar que IBM está construyendo su propio ordenador cuántico.
Imagínese que se podrá hacer cuando se construyan computadores que manejen miles de gatos de Schrödinger.
La carrera esta lanzada y por ahora no hay quien la paré, quizás antes de dejar este mundo disponga en casa de un computador cuántico que me permita llevarme a un estado en el que, como el  gato de  Schrödinger, estaré a la vez vivo y muerto.


Guillermo Sánchez León |EUREKA es un programa de Radio USAL de divulgación científica que se emite los jueves a las 10 de la noche. Presentador: Guillermo Sánchez León.

El gato de Schrödinger.

El gato de Schrödinger es la paradoja más popular de la cuántica. La propuso el nobel austríaco Erwin Schrödinger en 1935. Es un experimento mental que muestra lo desconcertante del mundo cuántico.

Resultado de imagen de schrödinger gato

Imaginemos un gato dentro de una caja completamente opaca. En su interior se instala un mecanismo que une un detector de electrones a un martillo. Y, justo debajo del martillo, un frasco de cristal con una dosis de veneno letal para el gato. Si el detector capta un electrón activará el mecanismo, haciendo que el martillo caiga y rompa el frasco.

Se dispara un electrón. Por lógica, pueden suceder dos cosas. Puede que el detector capte el electrón y active el mecanismo. En ese caso, el martillo cae, rompe el frasco y el veneno se expande por el interior de la caja. El gato lo inhala y muere. Al abrir la caja, encontraremos al gato muerto. O puede que el electrón tome otro camino y el detector no lo capte, con lo que el mecanismo nunca se activará, el frasco no se romperá, y el gato seguirá vivo. En este caso, al abrir la caja el gato aparecerá sano y salvo.

Hasta aquí todo es lógico. Al finalizar el experimento veremos al gato vivo o muerto. Y hay un 50% de probabilidades de que suceda una cosa o la otra. Pero la cuántica desafía nuestro sentido común.

El electrón es al mismo tiempo onda y partícula. Para entenderlo, sale disparado como una bala, pero también, y al mismo tiempo, como una ola o como las ondas que se forman en un charco cuando tiramos una piedra. Es decir, toma distintos caminos a la vez. Y además no se excluyen sino que se superponen, como se superpondrían las ondas de agua en el charco. De modo que toma el camino del detector y, al mismo tiempo, el contrario.

El electrón será detectado y el gato morirá. Y, al mismo tiempo, no será detectado y el gato seguirá vivo. A escala atómica, ambas probabilidades se cumplen de forma simultánea. En el mundo cuántico, el gato acaba vivo y muerto a la vez, y ambos estados son igual de reales. Pero, al abrir la caja, nosotros sólo lo vemos vivo o muerto.

¿Qué ha ocurrido? Si ambas posibilidades se cumplen y son reales, ¿por qué sólo vemos una? La explicación es que el experimento aplica las leyes cuánticas, pero el gato no es un sistema cuántico. La cuántica actúa a escala subatómica y sólo bajo determinadas condiciones. Sólo es válida en partículas aisladas. Cualquier interacción con el entorno hace que las leyes cuánticas dejen de aplicarse.

Muchas partículas juntas interactúan entre sí, por eso la cuántica no vale en el mundo de lo grande, como el gato. Tampoco cuando hay calor, pues el calor es el movimiento de los átomos interactuando. Y el gato es materia caliente. Pero lo más sorprendente es que incluso nosotros, al abrir la caja y observar el resultado del experimento, interactuamos y lo contaminamos.

Resultado de imagen de el gato de Schrödinger

Científicos de la Universidad de Calgary (Canadá) y del Centro Ruso Cuántico (Rusia) han puesto a prueba un método capaz de aumentar la escala en la que ocurre la superposición de estados cuánticos, el fenómeno que trata de expresar la paradoja del gato de Schrödinger. Su objetivo es lograr este efecto a distancias microscópicas para saber dónde están los límites entre la física clásica y la cuántica. Sus avances han sido publicados recientemente en Nature Photonics.

Fuente: www.astromia.com