Polinomios Jensen para la función zeta de Riemann

hipótesis de Riemann - Buscar con Google

La hipótesis de Riemann constituye uno de los problemas abiertos más importantes en matemáticas. Aunque una gran cantidad de indicios apuntan a que es cierta, esta conjetura, formulada en 1859 por el matemático alemán Bernhard Riemann, sigue hoy sin demostrar.

En un artículo reciente, el matemático Michael Griffin, de la Universidad Brigham Young de Utah, y otros investigadores han encontrado un enfoque prometedor al retomar una línea de trabajo largamente abandonada. Los resultados se publican en PNAS.

Referencia: «Jensen polynomials for the Riemann zeta function and other sequences», Michael Griffin et al. en Proceedings of the National Academy of Sciences, vol. 116, págs. 11.103-11.1110, 4 de junio de 2019. DESCARGAR PDF. 


Resultado de imagen de hipótesis de Riemann

El punto de partida de la hipótesis de Riemann es una función de una variable, ζ(s), definida como la suma de los inversos de los enteros positivos elevados a la potencia s:

ζ(s) = 1/1s + 1/2s + 1/3s + ···

Esta función puede extenderse a valores complejos de s; es decir, a números de la forma s = a + ib, donde a y b denotan números reales e i representa la unidad imaginaria, i2 = –1. Dicha función compleja se conoce como función zeta de Riemann.

La función zeta tiene un gran interés en teoría de números ya que, entre otras razones, se encuentra relacionada con la manera en que se distribuyen los números primos. En concreto, la distribución de los ceros de la función zeta de Riemann (es decir, aquellos valores de s para los cuales ζ(s) = 0) proporcionaría una buena estimación de la distribución de los números primos si la conjetura de Riemann fuese cierta. Esta afirma que, con excepción de los llamados «ceros triviales» de ζ(s) (los números pares negativos: s = –2, –4, –6, etcétera), todos los ceros de la función zeta cumplen que su parte real es igual a 1/2.

Entre las vías exploradas para verificar esta conjetura, el matemático húngaro George Pólya demostró en 1927 que la hipótesis de Riemann era equivalente a otro problema: el de demostrar que cierta clase de polinomios, conocidos como polinomios de Jensen (en honor al matemático danés Johan Jensen), son hiperbólicos.

Un polinomio con coeficientes reales es hiperbólico si todos sus ceros son también reales. Por su parte, los polinomios de Jensen quedan definidos por dos parámetros: su grado, d, y su «desplazamiento» (shift), n. El problema es que existe un número infinito de ellos. Y aunque hace tiempo que se sabe que algunos sí son hiperbólicos, resolver la cuestión en el caso general se ha considerado hasta hoy un enfoque excesivamente difícil.

Ahora, Griffin y sus colaboradores han logrado demostrar dicha propiedad para un vasto conjunto de polinomios de Jensen. Para ello los investigadores recurrieron a los polinomios de Hermite, una serie de polinomios bien conocidos por los físicos por cuanto permiten expresar la función de onda de un oscilador armónico en mecánica cuántica. 

El nuevo trabajo ha demostrado que, para todo valor de d, los polinomios de Hermite proporcionan una buena aproximación de los polinomios de Jensen siempre que n sea lo suficientemente grande. Y dado que los polinomios de Hermite sí son hiperbólicos, el resultado implica lo propio para una gran clase de polinomios de Jensen. Se trata de un avance prometedor, si bien ahora falta por generalizar este resultado para todos los valores de n. Una vez más, la hipótesis de Riemann se resiste a ceder.


FUENTE: Sean Bailly

 

‘Resolver’ la hipótesis de Riemann

Anuncian la solución de la hipótesis de Riemann, el enigma matemático que podría revolucionar internet | Ciencia
Michael F. Atiyah

Los días pasados un terremoto recorría el mundo matemático: este lunes, 24 de septiembre, Sir Michael Atiyah, uno de los matemáticos más laureados y respetados de la historia anunciaba en el abstract de su conferencia en el Heildelberg Laureate Forum, que había demostrado de una manera sencilla la hipótesis de Riemann.

El abstract decía textualmente: »Es un conocido problema matemático sin resolver desde el año 1859. Yo presentaré una prueba simple utilizando una perspectiva radicalmente nueva. Está basada en los trabajos de Von Neumann (1936), Hirzebruch (1954) y Dirac (1928)». Su presentación apenas duró 45 minutos, estuvo basada en una única diapositiva de PowerPoint y el trabajo científico (ACCEDER) en el que se detallan los pormenores y que ya ha sido enviado para su revisión a la revista Proceedings of the Royal Society A sólo tiene cinco páginas.

Si el anuncio fuese de otra persona, el revuelo no hubiera sido de esta envergadura, pero Michael Francis Atiyah, de 89 años, es medallista Fields en 1966 y Premio Abel en 2004 (entre otras muchas distinciones). La duda sobre esta supuesta prueba surgió enseguida, aludiendo a su edad y a otros anuncios fallidos previos, y también a la singularidad de la ocasión, cuando hace poco más de un mes, Atiyah impartió una conferencia en el Congreso Internacional de Matemáticos de Río de Janeiro.

¿Y qué dice esta famosa conjetura?

Resultado de imagen de hipótesis de Riemann

Viene de una de esas extrañas relaciones internas de las matemáticas, entre los números primos y una función entre los números complejos llamada precisamente función zeta de Riemann, de manera que los ceros de esta función (los valores donde se anula) tienen todos parte real 1/2. Así que probar la conjetura de Riemann nos da una buena idea de cómo se distribuyen los números primos, que sabemos desde Euclides que son infinitos. Y los números primos son los ladrillos con los que se construyen todos los demás, piezas claves en muchas aplicaciones como en la criptografía.

Las pistas que daba Atiyah en su abstract, se referían a tres trabajos: el de John von Neumann titulado ‘On an algebraic generalization of the quantum mechanical formalism‘, esencial para la formulación matemática de la mecánica cuántica; uno segundo titulado ‘Arithmetic genera and the Theorem of Riemann-Roch‘, clásico en geomería algebraica, escrito por el matemático alemán Hirzebruch, y cuyo resultado principal está basado en la teoría del cobordismo de René Thom; y otra obra clásica del premio Nobel P.A.M. Dirac, ‘The Quantum Theory of the Electron’, en el que introduce la ecuación de onda del electrón unificando la mecánica cuántica y la relatividad especial.

Sólo un genio como Atiyah podría ser capaz de presentar un abstract basado en estas tres piezas maestras de tres maestros y decirnos que así ha probado de manera sencilla la hipótesis de Riemann. Sin embargo, tras una muestra de erudición matemática y física (implicando incluso a la famosa constante de estructura fina de Arnold Sommerfeld), nos hemos quedado con la miel en los labios. Atiyah usa la función de Todd (llamada sí en honor de su antiguo profesor John Arthur Todd) para obtener una contradicción, pero las dudas surgen. Por una parte, hay cuestiones técnicas sobre las funciones implicadas, y por otra, da la impresión de ser un argumento circular. En cualquier caso, esta presentación ha servido para remover el interés sobre las matemáticas y esta extraordinaria conjetura, uno de los problemas del milenio. Sabremos más en los próximos días sobre la veracidad o no de la prueba de Atiyah.